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An inverse modeling approach was taken up in this work to model the process of recrystalli-
zation using cellular automata (CA). Using this method after formulating a CA model of re-
crystallization, differential evolution (DE), a real-coded variant of genetic algorithms, was used
to search for the value of nucleation rate, providing an acceptable matching between the theo-
retical and experimentally observed values of fraction-recrystallized (X). Initially, the inverse
modeling was attempted with a simple CA strategy, in which each of the CA cells had an equal
probability of becoming nucleated. DE searched for the value of the nucleation rate yielding the
best results for single-crystal iron at 550 °C. A good match could not be simultaneously achieved
this way for the early stages of recrystallization as well as for the later stages. To overcome this
difficulty, the CA grid was divided into two zones, having lower and higher probabilities of
nucleation. This resulted in good correspondence between the predicted and experimental val-
ues of X for the entire duration of recrystallization. The introduction of a distribution in the
probability of nucleation made the model even closer to the actual process, in which the prob-
ability of nucleation is often nonuniform due to nonuniformity in dislocation density as well as
the presence of grain/interface boundaries.

1. Introduction

Thermomechanical processing of a material is carried
out to tailor its microstructure and texture, which, in turn,
helps to achieve the desired properties. Recrystallization is
one of the mechanisms by which the microstructure and
texture are altered during thermomechanical processing. It
occurs by the nucleation and growth of dislocation-free
grains within a region of high dislocation density.

Although studied by numerous researchers worldwide,
there are still a number of issues related to the process of
recrystallization that have defied precise analysis. For ex-
ample, a reasonably accurate experimental determination of
the nucleation rate and its mesoscopic distribution is not
possible as the sizes of the critical nuclei are too small, and,
although growing, they tend to merge with the other grow-
ing nuclei as well. The complexities associated with a theo-
retical evaluation of this parameter are also enormous. Thus,
in a large number of recrystallization models that exist in
the literature, the value of the nucleation rate, in most cases,
has been arbitrarily chosen.[1-16]

In this study, we have used an evolutionary computing
approach to circumvent the problem. At the core of our

simulation runs a cellular automata (CA) scheme that is
further augmented through the application of genetic algo-
rithms (GAs), which provide the CA model with values of
the model parameters, and also monitor its output. Genetic
algorithms are biologically inspired computing techniques
that come in many different forms.[17,18] What we have used
here is known as differential evolution (DE).[19,20] Very
limited work has been carried out utilizing GA within the
CA framework.[21] It has not been done, so far, for modeling
recrystallization or any other process involving a micro-
structural transformation. For further clarity about the
adopted methodology, brief outlines of both CA and DE are
provided below.

2. About Cellular Automata

CA[22–26] have been compared with a synthetic model of
the universe in which the physical laws are expressed in
terms of simple local rules in a discrete space-time structure.
The efficacy of CA techniques lies in the fact that they can
predict the behavior of a system at the macroscopic level
when the rules governing the system at a microscopic level
are known. They have already been used for modeling a
large number of physical systems belonging to diverse dis-
ciplines like biology, chemistry, geology, and biochemis-
try.[22-26] In material science, the CA techniques are initially
applied to problems related to solidification processes.[27,28]

The methodology has been extended to phase transforma-
tion in subsequent studies, and recrystallization is one area
that has been investigated in the process.[10-16]

As indicated before, CA deal with a discrete dynamic
system,[22-26] the behavior of which is completely specified
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in terms of some local rules. To be more specific, CA deal
with an array of cells the evolution of which is characterized
by three features: the state of the cells; their neighborhood;
and the rules for their transition. To construct any CA to
simulate a specific problem, one needs to make a number of
choices, the first being the selection of specific lattice ge-
ometry. Cellular automata require this lattice to be regular.
In fact, it can be a linear (one-dimensional), triangular,
square, hexagonal (two-dimensional [2-D]), or cubic (three-
dimensional) array of cells. Once the lattice, L, is decided
upon, we choose a neighborhood in which cells can interact.
The neighborhood of a cell is described as a set of cells
surrounding it. It is further elaborated in Fig. 1. For the
nearest neighbors on a square lattice, the neighborhood,
which is called the von-Neumann neighborhood of radius r,
is described by:

Ni,j = ��k,l� ∈ L : | k − i | + |l − j | � r�

Another common neighborhood is the Moore neighborhood
of radius r, defined as:

Ni,j = ��k,l� ∈ L : | k − i | � r and |l − j | � r�

In the formal definition of CA, one usually requires the
lattice to be infinite in all dimensions. For the considerations
of computability and complexity, this is reasonable and nec-
essary. However, it is difficult to simulate a truly infinite
lattice on a computer, and therefore, one needs to prescribe
some boundary conditions. Furthermore, the system that
one wants to simulate may also require certain natural
boundaries. Periodic, reflexive and fixed value boundaries
are some of the options that are available in this scenario.
This is elaborated in Fig. 2.

Along with the boundary conditions, the initial condi-
tions are also required to start a CA simulation. In most
cases the initial condition significantly influences the sub-
sequent evolution. The initial conditions can be very spe-
cially constructed or, depending upon the nature of the prob-
lem, they can be randomly generated as well. One important
consideration in the generation of initial conditions is that
many CA rules conserve some quantities like the total num-
ber of particles, the total momentum, or energy and so on.
Often some spurious quantities (i.e., quantities that are not
conserved in the system to be modeled) can be conserved as
well. In generating the initial conditions, care must be taken
that the intended values of the conserved quantities are
reached, especially when the random initial conditions are
used, and that the spurious conserved quantities do not pro-
duce any undesired effects.

According to the definition of CA, each cell is a finite
automaton, and therefore the set of states has a finite size. In
addition, this set is usually kept fairly small because it sim-
plifies the specification of rules, whereas a reason to use a
large number of states can arise in some situations for better
approximating a continuous system. A common construc-
tion of CAs is required to have several variables in each cell
that must be stored in the state. In this case, we construct the
state set S as the cross product of the sets for each variable.
Formally, the state set is described as S = U X V, where U

and V are the set of values that the variables u and v can
take. The size of the set S is |S|� |U||V|.

The most important aspect of CA is the transition rule or
transition function. This is what affects the evolution most,
and it depends on the lattice geometry, the neighborhood,
and the state set. The transition rule determines how the
state of a cell can change depending on the state of its
neighbors. Rules can be directly specified by writing down
the outcome of each possible configuration of states in the
neighborhood. They can also be probabilistically specified
where the outcome can be one of many states with associ-
ated probabilities. Formally, a transition rule can be ex-
pressed as:

T : Sn X S → sP

where S and n are the state set and the number of cells in the
neighborhood. sP is a state from S, and it can occur with
probability P. For direct specification of the rules, there will
be only one state s ∈ S with P � 1, and zero for the rest, for
each possible configuration of the neighborhood. However,
for probabilistic transition a positive value can be associated
with one or more states in S.

In fact, CA can be considered an idealization of a physi-
cal system in which the space and time are discrete, and the
physical quantities take only a finite set of values. In many
real systems, the time evolutions of physical quantities are
often governed by nonlinear partial differential equations.
Owing to such nonlinearities, the solutions of these systems
can often be very complex. Cellular automata provide an
alternative approach for studying the behavior of such dy-
namic systems, subjecting them to an easier analysis by
virtue of their inherent simplicity.

Fig. 1 Examples of different neighborhoods

Fig. 2 Different types of boundary condition
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3. Basic Differential Evolution

The most common forms of GAs involve a binary en-
coding of the problem variables. An individual is formed by
concatenation of the variables in their binary form. A ran-
domly generated set of individuals constitutes the initial
population containing a number of trial solutions. This
population now evolves from generation to generation
through some repeated, well-devised applications of the se-
lection, crossover, and mutation operators, each devised
analogously to their biological counterparts. Following a
Darwinian framework, the individuals with higher fitness
(i.e., the relatively better solutions) continue to emerge,
survive, and reproduce until their ultimate convergence.
Although highly robust and ubiquitous, the binary GAs
are not devoid of problems. As discussed elsewhere,[18]

they often require storage of very large binary arrays, in
addition to repeated variable mapping between the binary
and real space. Furthermore, in a situation known as Ham-
ming cliff,[29,30] they become highly sluggish and often un-
suitable for an essentially real variable problem. In DE, such
difficulties are easily bypassed by doing away with binary
representation altogether. A population of real-coded solu-
tion vector is allowed to evolve in DE, and both the cross-
over and mutation operations are conducted using a real-
coded procedure. The crucial idea behind DE is to generate
new trial variable vectors using direction information from
the existing vectors.[19,20] The method is initiated by adding
a weighted difference between two existing vectors to a
third member, which essentially constitutes its mutation
process. Through a specially designed crossover operation,
the mutated vector is now recombined with a fourth member
of the population to yield an offspring, and following a
greedy strategy, the child replaces the parent if, and only if,
it obtains a better fitness.

DE starts by randomly generating a population of real-
coded solution vectors. For example, in the case of a four-
variable problem, Xi, � [x1, x2, x3, x4], will denote a typical
solution vector in which the components x1, x2, x3, and x4
are the real-coded representation of the problem variables at
a particular generation. A generation count G is maintained
to keep track of the number of cycles completed during the
evolutionary process. The initial population corresponds to
generation G � 0.

Each of the members is then assigned a fitness value that
represents how good the solution is in the problem domain.
The concept of fitness here is essentially the same as that in
the other forms of GAs. Next, for each vector Xi,G, the
corresponding mutated vectors are generated using three
other randomly picked individuals such that:

V = Xrl,G + F.�Xr2,G − Xr3,G�

where each one of Xr1,G, Xr2,G, and Xr3,G are randomly
selected, but mutually different, vectors from the popula-
tion. F is a real and constant factor that controls the ampli-
fication of the differential variation. The term F(Xr2,G −
Xr3,G) determines the extent of the mutation of the vector
Xr1,G. The mutation here is self-adaptive in nature. For the

initial generations, the population remains random, and,
consequently, the differential term (Xr2,G − Xr3,G) remains
large, resulting in a larger amount of mutation. As the popu-
lation moves toward convergence, the system requires only
a small amount of mutation, which is automatically
achieved in DE because the differential term also tends to
become small in such cases. Furthermore, by adjusting the
parameter F, one can easily extend or contract the search
domain. These are two additional advantageous features of
DE that are normally not available in the binary coded GAs.

A specially designed crossover operator now takes over
to introduce diversity into the new parameter vector V. It
involves probabilistically replacing a few elements of the
vector with original values from Xi,G, to form the final trial
vector U:

uj = yj, if rj � Pcr
= xi, if rj � Pcr

where xj belongs to Xi,G, rj is a random number, Pcr is the
crossover probability, and ui and vi denote the typical com-
ponents of the vectors U and V. Additionally, it is always
ensured that U is able to retain at least one component of the
mutated vector V. A fitness value is computed for this trial
vector as well.

A comparison of the fitness values is now made between
the parent Xi,G and the child U, and the one having better
fitness is passed on to the next generation as Xi,G+1. This
completes one generation of the evolutionary process, and
the whole process is repeated with this newly generated
population. The same procedure continues until the solution
vectors converge.

The basic operations involved in DE are shown sche-
matically in Fig. 3 for an arbitrary variable problem.

4. Modeling the Recrystallization Process

Models of recrystallization can be divided into two broad
classes: analytical and probabilistic. Analytical models are
based on Johnson-Mehl-Avrami-Kolmogorov relationship.

Fig. 3 Mutation and crossover operations in DE
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Monte-Carlo and CA models are probabilistic approaches.
A CA model of recrystallization has certain advantages over
other models. One of the important advantages of a CA
simulation is that it can be directly related to the evolution
of microstructure and features like the spatial distribution of
a second phase can be demonstrated convincingly.

Cellular automata models have been successfully used in
predicting the variation of fraction-transformed (X) as a
function of time during recrystallization.[10-16] The rate of
nucleation is one of the parameters in the CA models. How-
ever, as indicated before, a reasonably accurate estimation
of the rate of nucleation is not possible because of several
constraints. Thus, an evolutionary inverse CA modeling was
undertaken in this study to estimate the nucleation rate and
the mesoscopic distribution of recrystallization probability
on the basis of the available experimental data concerning
the variation of X with time. The objective of inverse mod-
eling is to estimate the input parameter settings for which
the model prediction closely matches the corresponding ex-
perimental results. Therefore, it is essentially a problem of
optimization in which we search for the parameter settings
that would result in a minimum deviation of the model
prediction. Thus, in this case, the set of parameters consti-
tutes the variable vector used in the optimization scheme.
Because the search space for the CA parameters is quite
wide, the need for a heuristic approach was automatically
felt. The method of DE was used to find the right choice of
the parameter vector that would minimize an error function.
On an industrial scale, the parameters obtained by inverse
calculation can be used for the prediction of X and also the
spatial distribution of the recrystallized zones as a function
of time. This basic methodology is further elaborated below.

4.1 The Implementation of Cellular Automata

In the present work, the CA represent a small portion of
the 2-D cross section of the material undergoing recrystal-
lization, and it is composed of a 2-D array of cells. The 2-D
array consists of a total of 106 cells to represent an area of
0.25 cm2. Thus, �cell, the length (or breadth) of each cell, is
equal to 5 �m, providing enough accuracy to the model.
Each of the squares can be in one of the two states: recrys-
tallized or un-recrystallized. Initially (i.e., at time � 0), all
of the cells are in an un-recrystallized state. In each subse-
quent time step, few cells are transformed into the recrys-
tallized state from their un-recrystallized state. The CA
model predicts the distribution of the recrystallized region at
different time steps by adopting the following strategy.

Transformation of an unrecrystallized cell to a recrystal-
lized one, with the increment in the time step, occurs in two
different ways in our model. Few cells are randomly chosen
and transformed into recrystallized cells, if they are found to
be unrecrystallized. Physically, this simulates the process of
nucleation. Thus, each unrecrystallized cell has a probabil-
ity of nucleation, which is given by the number of nucle-
ation events for each time step increment (nr) divided by the
total number of cells.

The second way in which the transformation of the cells
occurs is by the growth of the recrystallized region in the

CA, which simulates the growth phenomenon of the recrys-
tallized zone in a real material. During this process, the
unrecrystallized cells within a neighborhood of recrystal-
lized cells transit to the recrystallized state. Because the
neighborhood can be of many different types, its proper
description warrants further clarification. In the present
work, each cell in the recrystallization CA model is assumed
to be associated with an extended Moore neighborhood, as
shown in Fig. 4. The extended Moore neighborhood con-
sists of 24 cells around the central cell as shown in Fig. 4.
This neighborhood was chosen to incorporate the slowing
down of the growth process, as has been done by Hessel-
barth and Gobel.[10] This will be explained later.

For defining the neighborhood of the boundary cells, a
periodic boundary condition was assumed.

Because there were only two possible states of a cell in
the CA (i.e., recrystallized or unrecrystallized), we used
logical arrays instead of integer arrays to represent the cel-
lular arrangement, reducing the runtime memory usage in
the process. Also, instead of copying the new cell states to
the arrays having old cell states, we switched the pointers to
these two arrays to save the computing time.

The CA model predicts the spatial distribution of recrys-
tallized zones at integral time steps. One needs to estimate
the real (physical) time corresponding to the integral time
steps. In each time interval, a recrystallized region advances
by two cells (i.e., a distance of 2 �cell), which is equal to 10
�m in the current study. The recrystallized region advances
2�cell with a speed of growth rate (G). Thus, the real time
interval (�treal) between two consecutive time step will be
given by:

�treal =
2 ��cell

G
(Eq 1)

Here, we have used the recrystallization data for single-
crystal iron at 550 °C, for which the Cahn-Hagel growth
velocity relation[31] is expressed as:

Fig. 4 The extended Moore neighborhood
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G = 26.45 t−0.38 �m�min (Eq 2)

In some alloys, it has been observed that the rate of
recrystallization slows down in its final stage. To incorpo-
rate this effect into the model, we have used the concept of
impeded impingement of grains that was introduced earlier
by Hesselbarth and Gobel.[10] To simulate the impeded im-
pingement in the CA model, Hesselbarth and Gobel[10] as-
signed a lower (<1.0) probability of transition (Pt) to the
cells, when the number of recrystallized cells in their ex-
tended Moore neighborhood exceeded 11. The same ap-
proach was adopted in the current study.

However, few simplifying assumptions regarding the
growth of nuclei are made in our model. We have consid-
ered the rate of growth to be the same in two perpendicular
directions, which may not be strictly valid in a real situation.
Second, we have not taken into account the fact that during
recrystallization different nuclei may have different growth
rates due to differences in their crystallographic orientations
with respect to the parent grains.

Because the probability of nucleation will not be uniform
in the mesoscopic scale, owing to the nonuniformity in dis-
location density, here, following the approach of Hessel-
barth and Gobel,[10] we have considered two types of zones,
having high and low recrystallization probabilities. Consid-
ering a simple periodic spatial distribution of the zones of
high probability, the entire problem domain is divided into
equal-sized squares, as shown in Fig. 5. In each square, the
zone of high probability is located within a band adjacent to
the square boundary.

After considering the spatial distribution of nucleation
probability at mesoscopic scale, we have come up with a
total of five parameters for the CA model, which are listed
below:

• Nucleation rate in the CA array (nr)
• Transition probability (Pt)
• Square size or the periodicity of the spatial distribution

of the high-probability band (S)
• Area fraction of the high-probability band within each

square (�)
• The ratio of probability in the high-probability band to

that in the low-probability zone (�ratio)

4.2 Evolutionary Inverse Approach for Estimation of
Nucleation Rate and Its Mesoscopic Distribution

Each of these parameters is fuzzy and is estimated
through an inverse calculation using DE. The CA model
took the fuzzy parameters, which were also the decision
variables in DE, as input and predicted X. A match between
the X values calculated using the CA model and those ob-
tained experimentally was sought. This was obtained
through DE by minimizing the least-squares error between
the two quantities, and the whole procedure was repeated
until the emergence of an optimum set of parameters.

Fitness function = � �predicted X − experimental X�2

It should be noted at this point that a CA model would
deal only with discrete time steps. Therefore, X values
could not be calculated at some intermediate time steps
where the experimental data were available. A linear inter-
polation method was used to compute X in such cases.

The computing procedure is schematically illustrated in
Fig. 6.

We have attempted to adopt this procedure for five CA
models having different combinations of the model param-
eters listed in the previous section. Further details are pro-
vided in the subsequent section. For all cases, a population
size of 30 and a generation count of 50 were used in search-
ing for the values of the model parameters that would result
in the best fit with the available data on the variation of X
with time.[5] The mutation constant F was taken as 0.8, and
Pcr was taken as 0.5. Convergence was ensured by making

Fig. 5 Zones of low and high nucleation

Fig. 6 Schematics of computing strategy
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the maximum, minimum, and average fitness values fall
within a narrow interval, and no further improvement of
fitness was possible with enhanced mutation.

5. Results of Inverse Modeling
As mentioned before, the inverse CA modeling was ac-

complished using five progressively complex CA models.
In the first and simplest CA model, nucleation was ran-
domly seeded in the 2-D array, and thus all cells had an
equal probability of becoming nucleated. A simple growth
rule (i.e., a cell is recrystallized in the next time step if it
finds at least one recrystallized cell in its neighborhood) was
imposed. Figure 7 shows the evolution of the microstructure
at different time steps in this case. The inverse modeling
using the first model thus involved only one decision vari-
able (i.e., the nucleation rate [nr]).

In this search, nr varied from 1 to 100,000. The best-

fitting variation of X with time, obtained from this model, is
shown in Fig. 8, along with the experimental data points.
The nucleation rate corresponding to the best-fit curve was
849 cells per time step. The fit appears to be reasonable only
for time >60 s.

For the early stage of recrystallization (time <60 s), the
percentage deviation of the predicted X values from the
experimental data was high. DE however, is a sufficiently
robust method for searching the optimum parameter settings
that would provide the best fit. Therefore, the failure to
obtain a good match, both in the beginning and at the later
stages of recrystallization, is due to the inherent limitations
of this simplistic CA model, and not to any shortcomings of
the DE technique.

Higher nucleation rates would provide a better fit for
time t < 60 s. However, this will also disturb the good match
obtained for t >100 s (which was obtained for nr � 849)
because the predicted value of X would be higher than the
experimentally observed values. It appeared that a combi-

Fig. 7 Evolution of the CA array at different time steps (nr � 849). Light zone, unrecrystallized; dark zone, recrystallized
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nation of higher nucleation rate and the impeded impinge-
ment rule, which reduces the rate of recrystallization at a
later stage, would provide a better fit with the experimental
data available for t < 60 s, and also at the later stage of
recrystallization. Therefore, the CA model was enhanced by
assigning transition probability (Pt) to the cells having more
than 11 recrystallized cells in their extended neighborhoods.
Pt varied from 0.0 to 1.0. However, no combination of nr
and Pt could provide a good fit for time less than ∼60 s and
simultaneously at the later stage of recrystallization. This is
evident by comparing Fig. 8 and 9. For the second model, as
in the first, the percentage error has been found to be high
for a time less than ∼60 s. Thus, the incorporation of the
impeded impingement rule really did not constitute a very
significant improvement.

In the third model, the CA analysis was further enhanced
by incorporating the distribution of nucleation probability,
as discussed earlier, and the transition probability was fro-
zen to 1.0 (i.e., the impeded impingement rule was not
applied). Here the decision variables were nr, S, and �.
During the simulation, nr was varied from 25 to 110,889,000,
S was varied from 3 to 200, and � was varied between 0.1
and 0.33. Figure 10 shows the evolution of the CA arrays at
different time steps for this case. In this case, the quality of
the fit has improved significantly, as can be seen from Fig.
11, especially for times less than ∼60 s. Thus, considering
the spatial distribution, it is possible to obtain a good fit for
times less than ∼60 s, as well as for the higher times.

In the fourth model, in addition to the variables consid-
ered in the third case, Pt was introduced as a decision vari-
able. The value of Pt was varied from 0 to 1. This exercise
did not show any improvements in the fit, again suggesting
that Pt is not an important parameter in the model (Fig. 12).

Finally, in the fifth model, in addition to the third case,
�ratio was introduced as a decision variable. The value of
�ratio was varied from 0.1 to 0.33. The best fit obtained in
this case is shown in Fig. 13.

The optimum values of the parameters found by DE for
each of the five models discussed above are shown in Table 1.

The statistical analysis included in the Appendix would
provide some further insight on the trends of the results.

6. Discussion

The CA models of recrystallization developed during
this study have several advantages over the more traditional
models. One important advantage is that the CA simulation
can be directly related to the evolution of microstructure.
Any CA model is based upon the idea that the evolution of
a cell is dependent on the evolution of its neighboring cells,
which in turn, depends on the evolution of the cells in their
respective neighborhoods. Thus, the evolution of any par-
ticular cell is dependent on the evolution of the rest of the
cells in the CA. Therefore, the spatial distribution of the
state of the cells in the automata must necessarily influence
the evolution of a particular cell. In this way, a CA-based
recrystallization model closely mimics the actual process
that it attempts to emulate.

Like any other models of recrystallization, CA models
would also require the rates of nucleation and growth for
predicting the evolution of the microstructure. However,
as stated earlier, so far it has not been possible to estimate
the precise value of the nucleation rate, either through
experimental or theoretical procedures. As elaborated here
for single-crystal Fe, a CA-based procedure can over-
come this difficulty through inverse modeling. Due to this
unique attribute, a hybrid CA procedure like the one
adopted here becomes highly effective for the estimation of
the rate of nucleation and also its mesoscopic distribution,
provided that the growth rate or the migration velocity is
known.

It is evident from the results presented in the previous
section that the CA models that assume uniform nucleation
probability throughout the cross section have some inherent
limitations. Such models, as observed in this study, could
not be used for simultaneously simulating the early and later
stages of recrystallization. Even a robust search technique
like DE could provide very little help in improving the
situation, when such models are used. As per Fig. 8 and 9,
the first two CA models with the best possible value for nr
and Pt tend to underpredict the values of X in the early part
of recrystallization. Similar trends were also noted in the
earlier CA models of recrystallization,[13,16] which also as-
sumed a uniform nucleation rate.

Fig. 8 DE solution versus experimental data (decision variable nr) Fig. 9 DE solution versus experimental data (decision variables
nr and Pt)
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Incorporating the distribution of the nucleation probabil-
ity over the CA grid divides recrystallization in two stages.
During the early stage of recrystallization, the kinetic pro-
cess is dominated by the transformation in the high-

probability zone, which practically is over within a short
period of time (Fig. 10). In the later stage, the transforma-
tion in the low-probability zone dominates the kinetics, as
the high-probability zone attains its saturation by then. The
results of the third, fourth, and fifth CA models have indi-

Fig. 10 Evolution of the cellular automaton array at different time steps (nr � 2500, S � 195, and � � 0.1) Light zone, unrecrystallized;
dark zone, recrystallized

Fig. 11 DE solution versus experimental data (decision vari-
ables, nr, S, and �)

Fig. 12 DE solution versus experimental data (decision variables
nr, S, �, and Pt)
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cated that, apart from the fraction of the high-probability
zone, its spatial distribution also influences the kinetics of
transformation (i.e., the variation of X with time). In this
investigation, a periodicity of 163 to 195 cells gave the best
fit with the experimental data points.

It is important to note that in the present state of model
development, it may not always be possible to differentiate
between the performances of CA models 3, 4, and 5. Any
further enhancement in this direction would require detailed
experimental data, such as the size distribution of the re-
crystallized zones, texture distribution, initial grain size, and
dislocation density distribution, which are unavailable at the
moment. Thus, presently we can make only a rough esti-
mate of the rate of nucleation, which varies from ∼1500 to
∼2700 nuclei per unit time-step per 0.25 cm2. The spread is
substantially less compared to the earlier theoretical esti-
mates, which often varied by four orders of magnitude.[31] It
should be noted that an enhancement of the CA model based
on the experimental data on grain size and the distribution
of dislocation density (which can be estimated from the
microhardness variation) can further reduce the uncertainty
level.

It needs to be pointed out at this stage that the phenom-
enological model provided here for the heterogeneous
nucleation does not explicitly refer to the cellular structure
of the dislocations observed in the heavily deformed metals.
This was done to retain the inherent simplicity of the ap-
proach that we took, and not to burden it further with ad-
ditional details that would certainly involve the engagement
of a few more uncertain parameters. It is well known that
the strain energy associated with the dislocation structure in
a deformed metal is actually the repertoire of the driving
force needed for the nucleation to occur. Also, in a cellular
structure of dislocations, the probability of nucleation inside
the cell would be quite negligible. The regions of high
nucleation density that we have considered here should be
interpreted as grain boundaries having larger length scales
and providing heterogeneous nucleation sites, rather than as
dislocation cellular structures, although the driving force is
still provided by the dislocation network. Any question of
transformation within a subgrain does not arise in such a
scenario. Realistically, the dislocation configurations in the
deformed regions are far from being ordered. Owing to the
deviation from an ordered structure, local fluctuations exist
in the strain-energy distribution, and their peak values en-
able nucleation to occur by overcoming an Arrhenius-type
activation energy barrier. This, in turn, tends to drive the
local energies of these regions more toward a thermody-
namic equilibrium, thus, progressively eliminating them as
a source of future nucleation. Such details on the microscale
would be absolutely essential for constructing a system
model requiring a closed-form solution of every system
equation. However, one can afford not to use such informa-
tion directly in the inverse-modeling approach that we have
adopted here, as it can capture the essentials at a macro-
scopic level following a path laid out by the existing ex-
perimental data.

Apart from developing an inverse CA model using DE
that provides a reasonable estimate of the rate of nucleation,
the present work brings out the importance of mesoscopic
heterogeneity (i.e., spatial distribution on a mesoscopic
scale) in the CA modeling of recrystallization. The incor-
poration of mesoscopic heterogeneity also brings the model
closer to the physics of the actual process. During the stage
of cold-working or plastic deformation, the deformation and
dislocation density, as indicated earlier, are not uniform.
This leads to nonuniformity in the rate of nucleation as well.
Also, the rate of heterogeneous nucleation at the grain
boundary is expected to be higher, further justifying the
need for incorporating the mesoscopic heterogeneity.

7. Conclusions

This study has elaborated several advantages of CA
models of recrystallization over the more conventional al-
ternatives. A CA simulation can be directly related to the
evolution of microstructure, which can be considered to be
a prime advantage. Due to experimental as well as theoret-
ical limitations, it is not possible to directly obtain a rea-
sonable estimate of the rate of nucleation and its mesoscopic
distribution. The CA models of recrystallization that have
been developed so far have used some arbitrarily chosen

Table 1 The optimum parameters determined by DE

Model No. Optimum parameter values

1 nr: 849 nuclei/time step
2 nr: 849 nuclei/time step

Pt: 0.405
3 nr: 2500 nuclei/time step

S: 195 cells × 195 cells
�: 0.1 (Pt � 1)

4 nr: 2736 nuclei/time step
S: 171 cells × 171 cells
�: 0.1
Pt: 0.589

5 nr: 1449 nuclei/time step
S: 163 cells × 163 cells
�: 0.146
�ratio: 0.33

Fig. 13 DE solution versus experimental data (decision variables
nr, S, �, and �ratio)
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value of nucleation rate and its distribution. The inverse-
modeling approach taken up in this work could overcome
this limitation. The CA model used in the present scheme is
augmented through a real-coded variant of GAs that pro-
vided the CA model with values of the model parameters
and also monitored its performance by evaluating a fitness
function. Inverse modeling revealed the necessity of incor-
porating a mesoscopic distribution of the nucleation sites
into the CA model, predicted some acceptable microstruc-
tures, and also predicted the nucleation rates within a lower
amount of uncertainty than that currently existing in the
literature.

Finally, GAs are suitable for problems of very high com-
plexity,[32] and they are gradually becoming ubiquitous in
the field of materials[33]; however, the obvious advantage of
coupling them with a powerful evolutionary algorithm like
cellular automation is yet to be fully exploited by the re-
searchers in this area. Furthermore, GAs are now making
their presence felt in the simulation of the industrial rolling
processes,[34,35] in which studies such as the present inves-
tigation can indeed make a substantial contribution.
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Appendix: Statistical Analysis

The correlation coefficient gives us a measure of how
well the predicted values from a simulation model fits the
experimental data. The strength of the relationship between
the two data sets is characterized by a numerical value be-
tween 0 and 1; the better the correlation, the higher the
number. The Pearson product moment correlation uses vari-
ance and covariance measures to determine this estimate of
the relationship. Given two data sets, X and Y, with cardi-
nality N, the Pearson correlation is given by the following.

r =
�XY − �X�Y

N

���X2 −
��X�2

N
���Y2 −

��Y�2

N
�

Table A-1 lists the Pearson correlation and the RMS
error obtained from the five different variants of the CA
model used in this study. The high correlation coefficient
values show that all of the models perform well in predict-
ing the dependent variable. Errors in models 1 and 2 are
comparatively lower than those in the other three models.

However, the predicted curves in models 1 and 2 show
more deviation in the initial part of the time-scale (<60 s)
than the other three models. The faster growth of the ex-
perimental values in this time interval is better accommo-
dated in model 5. Hence, we divided the entire time-scale
into three different parts (0 to 60 s, 60 to 150 s, and >150 s),
and individual RMS errors in each of these intervals were
calculated. Note that the experimental data show a high
gradient shift in its trend at the adjoining points of these
time intervals. A histogram of the calculated errors for mod-
els 1, 2, and 5 is shown in Fig. A-1. We found that model
5 gives a better prediction during the time intervals 0 to 60
s and >150 s, but shows some divergence in the intermedi-
ate areas. The average error from these three intervals is,
however, least in the case of model 5.

Table A-1 Correlation coefficient and RMS errors

Model r RMS error

1 0.9928 0.0459
2 0.9927 0.0446
3 0.9890 0.0566
4 0.9889 0.0576
5 0.9898 0.0498

Fig. A-1 Histogram showing error estimates from the three better performing models
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